{ "cells": [ { "cell_type": "markdown", "id": "0f18ddb6-6f8f-44b1-9083-c86b9ae657ac", "metadata": {}, "source": [ "# Sinusoid" ] }, { "cell_type": "markdown", "id": "fb0ada15-3643-4b61-b962-af80bd318097", "metadata": {}, "source": [ "`lamatrix` provides a Sinusoid model which can be used to capture periodic variability. This model enables you to fit for the amplitude of sinusoids, but is not linear in the period of the sinusoid. " ] }, { "cell_type": "code", "execution_count": 2, "id": "ae5d5c89-f880-4c50-9a53-bc4171ec3086", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "x = np.arange(-10, 10, 0.01)\n", "\n", "\n", "from lamatrix import Sinusoid" ] }, { "cell_type": "code", "execution_count": 5, "id": "3241dc64-c209-4971-8a2c-f036d0324b47", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\\[f(\\mathbf{x}) = w_{0} \\sin(\\mathbf{x}) + w_{1} \\cos(\\mathbf{x})\\]
" ], "text/plain": [ "'\\\\[f(\\\\mathbf{x}) = w_{0} \\\\sin(\\\\mathbf{x}) + w_{1} \\\\cos(\\\\mathbf{x})\\\\]'" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Sinusoid(nterms=1).equation" ] }, { "cell_type": "markdown", "id": "c7bde01c-1b76-451c-b081-fc62c3c71a5f", "metadata": {}, "source": [ "As shown above, this is only linear in the amplitudes of the sine and cosine terms. There is no way to build a linear model where a multiplicative weight can govern the period of these functions. \n", "\n", "`lamatrix` also provides a way to increase the number of terms of this model to fit higher order variability" ] }, { "cell_type": "code", "execution_count": 7, "id": "63d33d13-e9ea-420c-b3c4-f0b3716fa7e1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\\[f(\\mathbf{x}) = w_{0} \\sin(\\mathbf{x}) + w_{1} \\cos(\\mathbf{x}) + w_{2} \\sin(2\\mathbf{x}) + w_{3} \\cos(2\\mathbf{x})\\]
" ], "text/plain": [ "'\\\\[f(\\\\mathbf{x}) = w_{0} \\\\sin(\\\\mathbf{x}) + w_{1} \\\\cos(\\\\mathbf{x}) + w_{2} \\\\sin(2\\\\mathbf{x}) + w_{3} \\\\cos(2\\\\mathbf{x})\\\\]'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Sinusoid(nterms=2).equation" ] }, { "cell_type": "code", "execution_count": 8, "id": "d100b342-9f43-4277-aad2-aa1eb431a776", "metadata": {}, "outputs": [], "source": [ "model = Sinusoid('x', nterms=3)\n", "w = np.random.normal(size=model.width)\n", "sample = model.design_matrix(x=x).dot(w)" ] }, { "cell_type": "code", "execution_count": 9, "id": "e32159da-2a24-43cc-9550-d53afcf403e3", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAHHCAYAAACskBIUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzkElEQVR4nO29B7QUVbb/f0CyKEGCgGQQlSwqAgooDILZN8bxmfPomB3F31LUGQZHXTqO2RkV34zPNGMcAwaSARAESQIKkiQKAiIZ6f/6nsfuf91Ld9+u7qoTqr+ftZq69O17b3XXrr2/Z+99zqmUSqVSihBCCCEkAVS2fQKEEEIIIVFBYUMIIYSQxEBhQwghhJDEQGFDCCGEkMRAYUMIIYSQxEBhQwghhJDEQGFDCCGEkMRAYUMIIYSQxEBhQwghhJDEQGFDiEVatWqlLrzwQuULI0eOVJUqVVKLFi1KzHvr37+/fhSCL+8x7mtNiEtQ2BASAzNnzlSnn366atmypapRo4Zq1qyZ+tWvfqUeeeQR26dGCCGJportEyAkaXz++efqmGOOUS1atFCXXXaZ2n///dXSpUvVxIkT1cMPP6x+97vfpV87b948VbmyP+OL8847T5199tmqevXqtk+FEEIyQmFDSMQMHz5c1alTR02ePFnVrVu3zPdWr15d5v++CYS99tpLPwghxFX8GSoS4gkLFixQHTt23EPUgEaNGuXs0ZC+hs8++0zdeOONqmHDhmrvvfdWp512mvrhhx/K/Cxed9ddd+3xN8r/zh07dqi7775btW/fXpfF9ttvP3XUUUepDz/8sMzPjR49Wh199NH67+HcTznlFDVnzpwK+y5SqZT64x//qA444ABVq1Ytna2aPXt2Xp8Vfg9+3wMPPKAee+wx1aZNG/07Bg0apLNc+N1/+MMf9O+uWbOmPqcff/xxj9/z+OOP688cQrFp06bq6quvVuvXr9/jdU8//bRq27at/l1HHHGE+uSTTzKe17Zt29SwYcNUu3bt9O9s3ry5+v3vf6+fL4SXXnpJ9ejRQ+2zzz5q3333VZ07d9bZOwHv6eabb9bP165dW79myJAhavr06WV+z9ixY/Xn9corr+hrihInfifKnhs2bNDnd/3112s7w++56KKL9jhn/Pw111yjXnjhBdWhQwdtEzi38ePH5/Ve3nvvvbSd4G+fcMIJeV9vQkzAjA0hEYO+mgkTJqhZs2apTp06FfQ7UK6qV6+eDq4I/n/5y190MHr55ZdD/y6InxEjRqhLL71UB/OffvpJTZkyRU2dOlX3/YCPPvpIB1IIC7x+y5Ytuh+oT58++nUQS9m48847tbA5/vjj9QOvhzDZvn173ueIIIvX430jyN93333qzDPPVMcee6wO5rfeequaP3++PicIgGeffbbM+0OQHzhwoLrqqqt0ee+JJ57QGTMIxKpVq+rXPfPMM+qKK65QvXv31sH/u+++UyeffLKqX7++Fi7Crl279POffvqpuvzyy9XBBx+se6Yeeugh9c0336g33ngj1OcPAXnOOeeoAQMGqD//+c/6OQhGnNt1112n/49zwe8944wzVOvWrdWqVavUU089pfr166e+/vprLdaC4HpCnN12223pzwXvE2XNdevW6c8EpU8IUfw+XKMg48aN07Z07bXXauEGYTh48GD1xRdf5LTZf/zjH+qCCy5Qxx13nH4vmzdv1p81hPK0adNy2gkhxkgRQiLlgw8+SO2111760atXr9Tvf//71KhRo1Lbt2/f47UtW7ZMXXDBBen/P/fccynclgMHDkzt2rUr/fwNN9ygf9/69evTz+F1w4YNq/B3du3aNXXCCSfkPOdu3bqlGjVqlFq7dm36uenTp6cqV66cOv/88/c4v4ULF+r/r169OlWtWjX9+4Pne/vtt+vXBc8jE/g9eF3Dhg3LvLehQ4fq53HuO3bsSD9/zjnn6L+3devWMn9/0KBBqV9++SX9ukcffVT//LPPPqv/j88e7w/vc9u2benXPf300/p1/fr1Sz/3j3/8Q7/vTz75pMy5Pvnkk/q1n332WdbPOhPXXXddat99903t3Lkz62vwfoLnL59N9erVU/fcc0/6uTFjxuhz6NSpUxl7wudSqVKl1JAhQ8r8DtgfzjEIfh6PKVOmpJ9bvHhxqkaNGqnTTjst67XeuHFjqm7duqnLLruszO9buXJlqk6dOns8T4gtWIoiJGKQBUHGBqN+lBKQfcAIF2WDt956K6/fgUwBSgYCUv+//PKLWrx4cejzQVkJpYJvv/024/dXrFihvvrqK12+QvZC6NKli34v7777btbfjUyPZFqC54uMSBiQqUBfktCzZ099/O///m9VpUqVMs/j7y1btqzM38ffCzZho2kb5Zx33nlH/x8ZKvQ3XXnllapatWrp1+E9B/8uePXVV3WW5qCDDlJr1qxJP5A9AmPGjAn9+W/atGmP0l8QZE3k/HGd165dq0tJKBUhA1ae888/P52Jks8FmuXiiy8u8zo8j5Lezp07yzzfq1cvXX4S0OiOMt+oUaP0388Ezh/lPWSfgp8Leq7wd8J+LoTEBYUNITFw+OGHq9dee02XBZDeHzp0qNq4caPuhUBpoSIQaIKgLAXw+8Jyzz336IB04IEH6h6OW265Rc2YMSP9fRFLCKLlQYBH8EJgzoT8LPp3gqA3SM45H8q/XxEbwRJR8Hn5HLKdO8QLymry/WznCXGA1wWBAIQQxHsIPvD5ZWoAr4jf/va3+mdR6kOvEMTH+++/X+Y1KH+h1IXzg8hp0KCB/pu4TuidKebzwu8u/zvKfw4A54jSUvleLkGEMQRe+c/mgw8+CP25EBIX7LEhJEYQYCFy8EDgQDMnMgLonclFtplH/1dJyE35EXffvn11Q/Obb76pA9Df//53HUSffPJJ3XfjAtnebzGfQ6FACEAAPvjggxm/X148VAQaeZERQzYEjbd4PPfcczrr8vzzz+vX/OlPf1J33HGHFj1olkbmDBkcZKJwPi58XnIe6LPBEgblCWbWCLEJLZEQQxx22GHp0k8UICNSfuYPyjKZfj8CJUQVHj///LMWO2gwhbBBszNA02155s6dq7MHmAGTCflZjOaDmQ+M+gvJLoUleO7Bv4/PYeHChbqhuPx5SklJZozhdV27dk0/h1lTKCGi2TdYXitW4J500kn6AYGALA6agyFmMPPqX//6l55NhgbnILi++PyjJlNZEo3RmJGGDEwm8LmIUJPPlRAXYSmKkIhBr0GmEbL0qmQq+RQCAk35KbqYzlw+Y4N+jSDo3UAwlWnATZo0Ud26ddPZg6BQwqwuZHgw0ykbCHAo52BWTvA9YxaXCfD3IRr++te/lvn7EAgov2AqsohKBGxkqYKztTBrqLw4xGws9PD87W9/2+PvYbZYtrJcNsp//sjEoH8JyDVApqW8zSCzJ71EUYMesGDvDvpwkNHDbLZsWR/0iaFvCdklCMLyZCthEWIaZmwIiRg00qJXAWvPoAEVgRSrEWN6LabDImsSBci2oBn217/+tW7yRZYB5Y7yI/xDDjlE74WEZlFkbtBIiwwBpo8L999/v+4BQVPpJZdckp7ujR6NTGvlCBALmH6N6ccnnniiFkGY9otySxyZhkx/H/1LmO6N6cpo2Eb2BtOXUf5D8zGA+MKUdEz3RsbmrLPO0pkalITK99hgdWWsE4PPFiIVU94hFpG9wvP4jCX7lu91whR2/F302KDfB58txCR6mAA+O/RCwTYwHR3TyzEFvvy5RQWmdEOoBKd7A3yO2YCowdRufD6HHnqoXoEan/+SJUt0kzY+p0cffTSW8yUkFNbmYxGSUN57773UxRdfnDrooINStWvX1tOR27Vrl/rd736XWrVqVV7TvSdPnlzmdTLNF0cB04NvvfXWVIMGDVK1atVKHXfccan58+fv8Tv/+Mc/po444gg9VbdmzZr6vIYPH77H9POPPvoo1adPH/0aTE8+6aSTUl9//XWZ15SfAizncffdd6eaNGmif7Z///6pWbNm5TUVWqZ733///Rnf76uvvprx75f/fDC9G++ratWqqcaNG6euuuqq1Lp16/b4e48//niqdevWehr1YYcdlho/frye6h2c7g3w2fz5z39OdezYUb+2Xr16qR49euj3uWHDhvTr8nmP//rXv/R0dEw3hy20aNEidcUVV6RWrFhRZrr3TTfdlP4McR0mTJiwx7mF/VywHACe/+GHH9LP4f9XX3116p///Geqffv2+v117969jG1lu9ZyDrA1TPHGFPG2bdumLrzwwjLTxwmxSSX8E04KEUII8RX0DWFlZmZXSFJhjw0hhBBCEgOFDSGEEEISA4UNIYQQQhIDZ0URQkgJwbZKknSYsSGEEEJIYqCwIYQQQkhiKLlSFJYzX758udpnn30iWy6dEEIIIfGXUbGZcNOmTfUK3tkoOWEDURN2EztCCCGEuAG2AMEq3tkoOWGDTI18MFginBBCCCHu89NPP+nEhMTxbJScsJHyE0QNhQ0hhBDiFxW1kbB5mBBCCCGJgcKGEEIIIYmBwoYQQgghiYHChhBCCCGJgcKGEEIIIYmBwoYQQgghiYHChhBCCCGJgcKGEEIIIYmBwoYQQgghiYHChhBCCCGJgcKGEEIIIYmBwoYQQgghiYHCxnO2b9+udu3aZfs0iGfs2LHD9ikQz0ilUmr9+vW2T4OQCqGw8Zj3339fNWzYUDVr1kx98cUXtk+HeMKwYcNU9erV1RFHHMFARfJi69atasCAAapevXrq6quvtn06hOSEwsbjEfell16qfvrpJ7Vy5Up12WWX6REVIbmYMmWKuueee7StTJ48Wf3hD3+wfUrEAx566CE1ZswY/fXjjz+uRo0aZfuUCMkKhY2nvPXWW2rZsmVqr7320o8ZM2aoSZMm2T4t4jhPPfWUPu677776+Nxzz6lt27ZZPiviMhDBTz75pP66Tp06+ij/J8RFKGw85Y033tDHm266SZ111ln669dff93yWRHXA9Q777yjv3755ZdV48aN1bp169SECRNsnxpxmFmzZqklS5aomjVr6vI3+PDDD3V/HyEuQmHjaYAaPXq0/nrw4MFq0KBB+utPPvnE8pkRl5k5c6ZasWKFqlWrljrmmGPUscceq5+XEgMhmfjggw/0sV+/frovq0GDBmrTpk3s6yPOQmHjId9++61avny5bgDt1auX6tu3r34ePRObN2+2fXrEUT777DN9POqoo7Tt9O/fX/9/7Nixls+MuMz48eP1ceDAgapy5cppQTxu3DjLZ0ZIZihsPGTq1Kn62L17d1WjRg3VqlUr1bRpU7Vz5041bdo026dHHEVs47DDDtPH3r17p5/nkgEkG1999ZU+Hn744frYs2dPfaSvIa5CYeMh06dP18euXbvqY6VKldJfo9xASEWCGHTo0EFVq1ZNbdy4US1atMjy2REX+fHHH3V/DRAf061btzKChxDXoLDxEMyACjoa0Llz5zLfI6T88gAiekXYVK1aVXXs2FF/TbshuQZRrVu3Ts+IEr+zYMECvdwEIa5BYeOxs+nSpUv6OfmaAYpkYu7cuXoWC6Z5I0gJEqRoNyQTkpWRLA3Yb7/9dOkbzJkzx9q5EZINChsPU8NYvyaYpQGHHHKIPn7zzTfWzo24LWzETtAAKqAcBebPn2/t3Ii7zJ49ew9fA9q3b6+PtBviIhQ2Hs6IAhgxySJroG3btvr4ww8/6J4JQoJIAGrXrl2Z58VuGKBIJsQuDjzwwDLPix3RboiLUNh4BuramQIURA7Wlwi+hpDyglhG2uWFDW2GhBHEYkdiV4S4BIWNZ0gAkoAUpE2bNmVeQ0i+wmb16tVsBCVl2LJlS7rsXV7YMGNDXIbCJkHCRp777rvvjJ8XcRsJQOWFDWa6MNNHMiF+pG7duqp+/foZhQ0zNsRFKGwSKGwYoEiQn3/+We8An2nkHXyOo2+SrQyFtbIy+RpMZli/fr2V8yMkGxQ2nkFhQ8KycOFCfaxXr54efZdHpn8vXrzY+LkR94VNJl9Tu3btdBZn6dKlxs+NuMtFF12kt9349NNPrZ0DhY1HbN26VW9iGOynCdKiRQt9/P77742fG3EXsQexj/I0b968zOsICQqWli1bZvw+7YZkYsKECXpjXSwKagsKG4+QRj7szly+5g0OOOAAfaSjIZkClASi8tBuSDF2w4wNEVKpVNqPiH3YgMLGI4IGU77mDZo1a5buqeAMFyJQ2JBCqChAMWNDyrNhwwa1adOmMvHIBl4JmyeeeEJvHYA1W/Do1auXeu+991SpUJGj2XvvvdM9FHQ2pLywyWY3FDakEEEszzNjQwTxIagooLJgC6+EDRzwvffeq7788ks1ZcoU3aB0yimnpJf9Tjr5pPjke1K2IiTfAIX+rZ07dxo9N+Im6I+QmXQUxCRfXChDeSdsTjrpJHX88cfrtTiwxPfw4cN1d/7EiRNVKRBG2NDZkHyFTaNGjVSVKlXUrl270sGMlDbLly/X/RLVqlVTDRs2zPgaZmxI2OywKbwSNkF++eUX9dJLL+l6HkpSpUA+wkbqmhQ2BCA4VSRssCkm7YYEEZuBXQQ3TQ3CHhviasamivKMmTNnaiGDqc/I1rz++uvpna0zsW3bNv0QfG6qZcaGhGXt2rX6XslHEGMdG5YwSdB/ZBPDYP/999dHDC4xYQH+mJQ23+dhNybwLmPToUMH9dVXX6lJkyapq666Sl1wwQXq66+/zvr6ESNG6GXj5WH7A49b2GDXb8CSgrmMCFZfxdHlkTfKTdWrV68wSK1atcrYuZV6DwvEgM8lBQgZTFgAtBszYJCCPbxc5XtHMjbeCRvUfLHEd48ePbRo6dq1q3r44Yezvn7o0KF6Cpo8fK0Hb9++Pe08chlN48aN9ZGOJn7QaIvm9f32208NHDiwTGbQpV6JfKZe0m7MsWTJEt0juM8++6i7775b+RygxG44kIqf//znP3q2EXqePvroI+Ui31PYRAMaHnMFFIxSZXq4PHwEM1akmU82LcwERuaAASp+XnjhBfX222/rr0ePHq0ef/xx5RpiB5KRyQYDlDluvfVWtWjRIv31XXfdpWbMmKFcQ1Y4lwxwNiiIzYAYd+mll+psDUp/F198sdWVfbMhpWyba9h4J2yQfRk/frx2Cui1wf/Hjh2rzj33XJV0JOAgQGVanC+To3G1PJIUsK5ScMl5/N+1zzxoN7lggDLX8/Taa6/pr1u1aqWPTz31lHINsQOxi2zQbszwxhtv6M8Yg1qsVYbKw7vvvqtcK5Nt2LAhL38TN14Jm9WrV6vzzz9f99kMGDBATZ48WY0aNUr96le/UkknrKOBsne5hu87GNGizwsi8+OPP9aZwW+//VbNmzdPuQQDlFsgw4eyMkrojz76aLrE4JogzjfTJ99npi9e3nnnHX285JJLdAwUu3HRZqpVq5Zxs12TeCVsnnnmGZ2tQVoOIgd1xlIQNWECFJr5pKEPnxGJB2zyBrp37653Pz7qqKP0/yFyXIIZG7dAhhkMGTJE9e/fXwcB9Nx88803yiUoiN0Bold6agYNGqTXcgNYdd8lQbwqYDO5qgom8ErYlDL5OhrAPhtzAQqrXwNkEF0UNgxQbjFu3Dh97Nevnx6AiCAWe3KlpLB+/fpQdsOMTXzMnz9fZ4iRFe7du7e2napVq+p+FizR4GOMihsKG08IYzQMUvEzbdo0fTzyyCP1sU+fPvqI7T58zths3ryZJcyY+OGHH9JNwwhQoGfPnvqILWJcQTK9CJ716tXL+VouExA/WN4EdO7cWdWoUUM/sGciQDuGK6yisCFhobBxa9XrWbNm6a/RKwG6deumjygrrFmzRvlmN1iTRDato93Eg+xp17p16/TsTCxb4ZogDlNSoK+Jn+nTp5fxMeDwww93ThCvorAhYWEpyq3UMNL1EAJt2rTRzyFQYX2lYDbHpZJCPrMUGKTiBTM5ZeQtiLDB91xZB6mQQRQygy71eyRR2MggChx22GFO+RpAYUNCw4yNO8i6I506dSqzj46MqCSAuVJSyHeWAu0mXiTLB7sRsFQAFurDYo8QzC6VL8P4Gs7CNCtsZBuhOXPmKFdYRWFDTAgbzoqKBxEuUucWsAwBcGXKdzBA5TNLgcLGjLAJZmxwXVyzm3yneksJs2bNmukeIhIt2NtQVssP2s1BBx2UXul348aNygVWUdiQMCBFne8sheBrGKDiAevVAAlIgvzflam7YR0NlmoHDFDxIKPrjh07lnlegpRrwiZfu8GWIrL4IImWBQsW6KMszCegqVuuj692EycUNh4QZpYCkC0XXGpiTRLfffedPmL9miCujbzznRElMEDFx7p16/QDSF9WeWEzd+5c5QJhAxT9TfzCpryvSYLdxAmFjQeIwaApOJ+SAgOUGWFTPkCJsMGaE0gh24Yjb3dYuHBh+h6WBTRdFcS0G7+EjQt9Ntu3b08LdwobEquj+fHHHzlTIWIgWGRkWl7Y1KlTJ32NpFxlEwYo94RNeZtxsRTFTJ/72WGAHeKD4seFqkKVKlXyqirEDYWNBxQaoLDeimxKRqJ1NOhHwWyW8rRv394ZZyO9MhQ27tgN1rApjzyHPjrppbMJS1F+ZGzEbkQ0u1JVqByYKWoL+2dAInc0WJlSFltjkDJThhJkp28XljqXQCOCpSIobOJDgk8mYYPSlDRu27abHTt2pMWVnFNF0G7sCBvZHV5Ws7bJKof6awCFjQdIgMrX0QA6G/MBCrRo0SK9ArErdiMj6oqgzdgpRQUFse0ghfI1QC9fviUF2k087Nq1S0/nDoqYIPIcykDYCsW3GBUnFDYeEDZAle+zIdEhjkYEjA8Zm3ztRl6HETsWjCPRIfaQKUAFn7ctbESc1K9fX+211155/QxLUfEAwYL7EKWdTP1OmP4tW3PY9jdrd9tNvtnhuKGw8QAxmjDCBo4p+LMkGrCjLmjWrJnTGRs0jYcVNsEROgWxWbsRYWM7QBUziKKviWcQBVGDptzyIKsmmWPbgnhNAXYTJxQ2HhC2VyL4WjqbeAJU06ZNnc7YbNq0Kb33UL7OBs5TFgGj3UQHthqQ6f/ZhI0rpSj6Gn/EcFAQ224gXkNhQ8LCUZR/GRuUc2yuZSM2E2wkzwfaTfQsX748vf1Appl0LpWiCvE18lraTDy+5oADDsj6GlcGUmtZiiJhobBxp5lPglQ2YYPgJWVAm+WooM3ks6ijQLuJnopsBjRv3rxM+cFHX4ONMG03sSYJsYVcdiPfExuzxRpmbEjY6ZeyFg3Tw8r6zYvrAaHQpEmTrK+TrI3NUVShjoZ2Y758GQxQWHsIq7j6ZDfIQkkPCO3GbClKvievtcUaChsS9/RLwAAVPeI8sAgV9u2qKD3sSsYmDLQbOxkbfO7VqlVLb8nh00QF+CaWo+wIGxHLtoXNWpaiSCEBKsz0S8AAZWfk7Up6uFBhwwBlx24gDuT7LthN2AAlr+eU7+hLUbl6bFzwNakCZmDGDYWN4xSqhCls7Iy8gZSpbI68mbHxa+TtyuibduNnKSo48840+Luy7hUzNiQv6Gj8C1AibGyOogopKQCOvKNH7KCiTJ9LGRtm+uyyceNGLVYqshtsx4HNd20K4rW7rzlmX9asWVO5AIVNwoUNbg6bzYhJQjIwFQUoZmxIIYLYhUbQQu1GZgJyYcdo916CcMFMS5czfWscK0MBCpuElqKw0JrsssogFd0S5/ls9CaOxgVhE9ZuJECtW7culvMqNdB/sHLlSv11pmXxXcrYYAAk5YywQUoWdnRhd/JS8jUu9NmsobAhpowGokacDYNUtM6moo3eJGMje734ZDcMUNGCjKmsAI3ZdC4HKMm2BH1HvsiMTfqaaDM2FdmMC5m+NQUOouKEwsZxijEacTYMUtEKm4qcDYQPZrBhtC4OyhdhwwAVj82g/wBlBR9KCsjaSbY3XyiI7fgaF4TN2gL7+eKEwsZxijEaZmyiBYun5eNsgrvx2ihHFTP9UmwGe01hMUISjc1UlOVzIUAVU1KgILYnbCRDLCVP07AURYwaDUdR0YFygvQf5BOkbDYQFzP9UmZYAFnxmsQvhoGIYZSvbGxNQF/jZ4+NvMZ2dng/lqKICaOhs4k+QAV3wHZ1yrfYDEofYadf4v3JRo0cfZvN2OBzr169epnAZhJmbPzssZHX2BI2a1mKIiaNhj028TQO57OppM2MjdiMzHAKCwWx+YZzALuyOfouZll82oy9UpQrGZsGFDYkH9DjII6CPTb+lBSCwsaGs5HrXaiw4ejbnt3I62xkbKIQNihf7tq1K/JzKzUKETYoQW/dulWZhsKGhCIYWMJsgClwFGXH0dgOUGI3hdgMoN3YKUXZHn3LdO9ifA0a120t7V+q/gafvWzKa1MQ1y9wIBUHFDYOIwEKDZ1hNsAUWIqyF6DkdTYcTTEBClDY2ClF2e6XKEYQ16hRQz+Cv4cUBhr/RSzk0zyMEqavdhMXFDYOE9XIm46meEopY8NSlL1SlAQyn+2Ggjgam8GyEflmQWxl+rZs2ZJegJLChuQFSwr+Zmx8Fja0m9IsRXEg5QbiM9DrlG+m3pYgXrf7WkOEyWxKF6CwcRgGKP8zNvjsTW9CyoyNG6DfpNBSlI+CmBmbaEvJYZpxbQnidbttJrg3oQu4cyZkDxig/B1547OX0ZbMGjAFBbF7+0QxY0PibMa11WOzzsH+GkBh4zBRORpOwTSfscHoxVYDcbHTvSlsohXD+ewTZTtjg6yirHZc7DIBtJtoMjZhpt3bztjUo7ApnBEjRqjDDz9c1/LgAE499VQ1b948lVSimt0CUYPRIzGXsbEZpJjpc4OwZahggMKo3eTO8HKtMcMmuK1GGJixsbeekO0em/oOTfX2TtiMGzdOXX311WrixInqww8/1AvYDRo0SG/Yl0SKDVCYflmtWjX9NUdRxY1mRRiGcTa2MzYsRdlFSpBhhA3sC9k+9OeImDa9tEShvRLM2EQDS1HFU0V5xPvvv1/m/yNHjtQX9Msvv1R9+/ZVSaNYo8HoCz8LY8fvatGiRcRnWBoUOpr1NWPDkbe9kgL6stA0CpvBQ1aw9iFA0W6igaWoEsvYlEd2H86lbGVX5uDDF6J0NhxFRVMSDDOatSFsUL7YuHFjZLNbkDkgxdlN2DS9jdF3FL6GGRt7GZtgCfOXX35RpqCwiRj0jVx//fWqT58+qlOnTjn7cjDKlkfz5s2VL1DYJCNAmRQ2weuczy7kmZCfQ6kXC3ARs/evDbthxsbvjI34JgxE1hn8/ClsIga9NrNmzVIvvfRSztcNHTpUZ3bksXTpUuULUY6i6GxKQ9jIuaLBvkqVwirNtWvXTk9Vp92YtxtZv0RG7iZgxsbvjA32ihJhucbg8hIUNhFyzTXXqP/85z9qzJgx6oADDsj52urVq6t99923zMMXmLFxA5+ETRQ2g14i2o19YeNbgGLGxl7Gxme7UaUubJBmg6h5/fXX1ejRo1Xr1q1VUkEZQGZ7UdjYpdSEDWCQKq2MTbFLSwR/lr6muBhX6G7ZIoTWUNj4NSsK5af//d//VW+++aZOta9cuVI/j96ZmjVrqiQRDCiF9koEf5YBqnBKbeQd/HkGqcIpNbsRX7N161b9kN2+Sf5gWQlZv8iHjM2PEQhiVeoZmyeeeEL3yfTv319Pg5THyy+/rJKGOBqUzvLdCC0TDFD2bl5xTMi8wdGbgBmb5NiNb8ImuAmiT7NPXUKyNRCFWLG6FASxKvWMTSlNPWWA8n/kjUwiRCmmX8JhNWvWTPmyEqis18MAZf5a+BqgYOtoPEfWAQPQfLcfIcX7GhslzC1btqT3QnNN2HiVsSklGKD8vxZY80Z+xpSziUoQS5M97abw5SiKFTa+zYoC9Dfmt1OwJYjX7bYZ+Llgts4FKGwchQHKHXwaRUUdoGQRTBIO3G+y8WzYaxEMUKay1FENpMTf0G4Ko9DGYZvCpm7dugVvwxEXbp0NScMAlQxhY7pfgoLYLZvBrt5YcqIQmwnuURY3zNj4PdXbprCp51gZClDYOAoDlDswY0NM2gyaRmVGkYkgBQG1efNm/TXtxt+Mja+DqDigsHGUOAJUKTVfRwUaf2VGWSk5Gwpie9NgsUCiSUFc6CavmWApqvQyNvWLLF/GAYWNo0QdoLDgn3Swk/wJCsJCroU4KFMZm6jWleDI267TNxmk5FxxzYvtlWApyn6Pzfr169Nr4cQJMzbEmtFg+qVAZ1Pc3kvYj6VU6t7M2NgrRdkSNlEEKGZs7GVscP2QdQv+njihsCHWjAZrS8hUPDob8wHKZMYGWTlpNqWwSYbd+CZsmLGxZzfY9Fau4RrP7CZqKGwcJY5RFJ2NvZG3CWETXF26mG04AEtRxVGqGRvaTTT3cKH3r692EzUUNo7CUZQb+DjyRoYOo7eoxDCbzs33OpkUxFHu98NSVHFQ2EQDhY2jsO7tBj5lbKKcpSBiGE2IWDqdhKPUMzYcRBWG+GgKm+KgsHGQKHslAEtR9jM2cFi4rr44GiwsJ42ItBvzItPXHhsOoqJZT6hQYeOr3UQNhY2DBDesLLZXAnAUVXxquND1PUzOVIjS0WDaL4NU4TBjQ18TluB9JvdeqdhN1FDYOIgYDIwbs5qKhQGqcMRBFypscP3kxo+7HBW1o2Gmz36vhMkSJjM2bthMMX7f196sqKGwcZCoAxRHUYUjn1mhIyiT6WHajTtIYC9UEJvcCDOO3qyNGzemNwElZsSwyYzNli1b0gu+UtgQqyNvjqLMByiToyjajRtgGw7pkStUEIsYRl8WRIJvpSiIMVMbeCaFKIXNDz/8oEzYDErWsk6aS1DYOAhLCu7AjA3tJizBgF6o3WAjzJo1a3pnN9i8U5YaoCA2288XzLqtC/RpxoH8foiwYrfhiAP3zogwQCVM2JjK2ERd82bGpjibqVatmqpevXrBv8fUqtVR+pvgRpr0N+YzNj7aTBxQ2DgISwruUMoZG2b67NmMqSAVnGJMf+P3GjbBjM369et1STQuKGxIaBig3HM2UQgb30ZRHHnb68syZTdiM8FMS7HQbuxlbOTeT6VSsQrLKBvO44DCxkEYoNwAszqkcTOK5mFfMzYceSc3YyM2A/uOqleC+0XZEzYof9auXTv2dbOYsSGhYYBKThNoMECZWqAvqlEUBXHpCJsoAxQzxPaEjc92EyUUNg4SZ4Dihob5I465atWqRTWBynWM09FEvQ0HoCBOvrCJY5E1ZmzsCpv6u/0NMzakJDI2aCbjhoaFBSjZFsHVACVOMaptOAAzNskXNnFmbChswkFhEx0UNg4StdFgQ0Opn9PZ2GsChaOJazXWqLfhkN8FaDPJbx6OI2NDQWx+HRtQn8KGwsZFojYaZBtY97Y/8oaoievzZ4ByB2ZsKIhtTfc2VfpeR2FDbPdKADobewEK/TnImsXpbNgE6g6lLmwoiN1oHv6RGRviCnH0SgA6G3sBysQoKu4AxQ0Nky1solyPhM3D4dm5c2d6QMsem+KhsHGMOHol5PcBChuzi/OZClJxzG6R942ZdJs2bYrs9yadqIUNAh5WCI4DZvrcICgC2WNTPBQ2jhGXwbAUFR5xzFGsyBp3ejgOu+GGhnabh4MbDPqU6aOvKTxTj8X15J5zVdhs2bJFbd26VX9NYUOsChuWouyWouLO2MRhN9zQ0K7dQNTI9fTJbuR9y6rdxFx/jUlfU7lyZbXPPvsoF6GwKbGMDQNU/pR6jw2g3YSn1AWxBDsKGzvCpn7MGRuxmWBG0TXcPKsSJu6MDdPDyQ5QUW9KR7uxazeyz5hPwkbeN/qy4txhOklEtYZN0AesW7culqZ/1/trAIWNY3DknbxeCV9H3oB2U/jGqa4LYjQkb968ObaMTfn91kj8a9iY2OF7HYUNCQsDVLIzNj41DwNmbMIRLL+4LojFZoK9VFGAdZuwvxqgvzFfiqoe87pZcWWHo4TCxjHimLYLGKDCwx4b9ksUajPVqlUrauNUE8JGfA18Q5S9EhBKtBt7wibugRQzNiQ0zNi4g489NnEJG9qNeZsxlbGJI0BR2NjrsYm7gZjChoSGwsYdfFmgL65tOACn7oaDwub/oL+xt2YWoLAhJSVsGKDCN4FG2SuB3wkh4sM2HIAjb3ti2GdhQ7uxK4jrU9j4xfjx49VJJ52kmjZtqmu5b7zxhkoSzNi4QXA2RxTOBoID9hqHs5HfF/U2HPI7Ae3GzsjbhLCJowmUdhMOZvpKXNhgbYSuXbuqxx57TCURE70SmAZI8nM0mN0RRRMoBIdkU6J2Nhx5Jz9ArVmzRkUN7cYdmLGJluI2pbDAkCFD9COJmOiVwIJZ2OujVq1akf7+JJcUJNMSRZCCU6CwSS5xCRsEKJRHo5y9RLtxBwqbEs/YhGXbtm3aaIIPV4mzVwLrGkiAdvkzSKqjiXMKJksKyRc2EDVRL9XA5mF3oLCJlsQLmxEjRuh6tzyaN2+uXEUMBqOdYnd4LQ9EDZ2NvV6JONey4cg7uc3DcS62RrtxB/bYREvihc3QoUO1s5HH0qVLlavEvaIjZ0a5kbHxMUBRDOcH7eb/4CAqf9AegN5RH6Z7b9myRW3dutV5YeNdj00hI54omj9NELcSprPJHwao/4Ni2H6mD3azZMkSr+yGGZv8CX5GwX22XBQ263bbDCZDROkboybxGRufiFvYcPRtr6Tgq7ARm8EoLer1d5KIT4I4ru1bAAVxeF9To0YNvRVHFNSPaYdv8TXB5StcxLuMDWYNzZ8/P/3/hQsXqq+++kpfyBYtWiifYcYm+SPvOEdRcQobCVIub3znAj4JmzhL3xxE2bWZ+ruvKUQNfn9Uk1F86K/xMmMzZcoU1b17d/0AN954o/76zjvvVL5DYVMazsanjA3W8cFIEnD0nZxMH2aLol8CsBSVPF9TPaamcwqbmOjfv79eYK78Y+TIkcp3ZCQfd/OwK8IG12306NHq448/dm7RQJ9G3nHbjWtBavPmzerf//63mjNnjnINX+xGAlRwtmSSfQ3AxJFXX301lsUOXbOZuPps4ixflrSwSTKllrG5/fbb1YABA9TAgQPVPffco1zCl5F3qfVmoc/n2GOPVaeffrpegXzcuHGqVEqYUdpNMEBFueifq2J4wYIFqkuXLurMM89UPXr0iGUadCkIm3Uxz9yNCgqbEhQ2LjgbjJ7uu+++9P+HDx+uvv/+e1UqC/RFmaEqJbt54YUX1KRJk9Ii5/rrr3cm2xfcONV1QWzKZtATGWXzaqH8v//3/9ILoGKGWdD32MZHYVOPGRviWknBhZH3s88+qx1ev3791FFHHaWD1IsvvqhKYYE+9DegnBIF27dvT6+BUQqlqGeeeUYfb775Zt1HgIkDM2fOVEncONVnYRNsOg9+LjaAoEHpEtx99936+Nxzz+n1Y5IsbPbz0G6igsLGIUqpFPXaa6/p48UXX6zOOeecMs8l1dnUrl1bN+NG6WyCvRJRijAXBfHKlSvVp59+qt8rMjWyZ9wrr7yiXCpfRrVxqqlSVByg4Vx2mrctiN999121c+dOdcghh+gFW3Gf/PDDD+nMn22YsYkeChuHKBVhs3r1ajVjxgz99eDBg9Wpp56qv544cWKZ/bKS5mwQkKMOUuK0MJ0zjl4Jl0pRY8aM0UfMgmzWrFnabtCA7prNRLnGR5wj77iyfC5t4QJhA0455RQtOo8//nj9/3feeUe5gE/C5kc2DxPXjMYVRzN27Fh9RPNno0aNVNOmTVW7du30cxMmTFBJbR6OYy0bEyMoVzI2ImCOOeYYfezbt296CQiZupy08mXQZlC+lOXsfbIb24L4888/L2M3cnTF1/gkbNaxeZiE7ZWQvoukT/dGIAK9e/dOPydfixNypQk06iAV9Vo2JgKUKxkbKR0cffTR+tiqVSstitGf9cUXX6ikBijYoJR1aDfhy5dYxBUZpJ49e+rnjjzySH2EzbjQZxOXIK7PUhSxjYleCRccDZg2bZo+yiKLQWczefJkldQmUBBXKSrOEZQLI29kKmTdmkMPPVQfg8FKbCqJwgbvM2pBbNJubA6kRPCiv0auC77GuaHpfvbs2co2bB6OHgobRxBHA1ETV6+EC44GU3OnTp1aJkABrDEBXHI0UTeBxuFsSqUU9fXXX+sGUATiAw44IP18586d9dGFmVFxlS99txubgnjWrFn62K1bt/RzyH6Jv5Hv28SXUlQqlaKwIe7VLuXGQckLQcLW+jW40apUqaI6deqUfr5jx476iLVsbDcQBwNU1Bu9+dhj40KmD9O6JUAFr4lLwiauAOWrsHHBbkS4BH1N0N+4MJCKSxDXj1jYIG6gZQJQ2BDnRlA2nY3Mhjr44IPLZEMwq0dG4radTZwByueSgs0ANX369D1G3kFhA5uxvRBcXL0ScZYwk57p80HYmMjY7Irg3pAYhYwXlq5wGQobRzDhaKpVq5be0NCWs/nmm2/SwqY84nxsp4d9ClClUoqS/hoJSAJm08GmMZr87rvvlE18zNiYyBDbEsRoKp87d64qdWGza/cO31HaTNSZ7KihsHEEU9PobM+MEmFz4IEH7vE9cT62nY2PASrpJYVvv/1WH9u3b1/meYweO3TooL+WIGYLX+zGVK+EbUE8f/58LW6wy3WLFi0yChvsIWVzqYC4tuEAEPy1atWKrBzlS38NoLBxBFNGYztI5RI2ErTgbGziS4Aqldkt2IJi8eLFWe2mbdu2TtiNL83DCOQmeiVs+xoIG7GZ8hMyGjdurMvfEHk27SbOGZhR99lQ2BBnjcZ2kMolbNq0aVMyAcqn5mHbPTawBwQgnAcWdCyPLO5o2258EcRie2jgj7NXwrbdSGlS/EoQlFLkeZslzDhnYEYtbHxZdRhQ2DiCiZG37VIURifLli3LWFIIjryxoJbNhbNMNA9DkETR0GfC2QRn09m4LsEyVKbavisZG196s4JiOM5eCduDqFzCJvi8C8ImjhmYcdqN61DYlGgpyoazkcCDmy2TgGvevLkeRSJNvnz5cpXkAAVRU+y09mCvhIlSlK3Rd7b+mvLCRkoPtvAlY1MqZW/fhE0c1I9wFqYv2ykAChtHKAVhs2jRIn1s3bp1xu9D1GCZfNuj7zidDWamSfq/WGdjqlcCKXLZldxGkJLAIwKmFDN9cZSikl72prBRXgriKKCwcQRTzsamsFmyZIk+lp+h4FqfTZw9NlH22ZjqlbA9+ha7admyZcbvI9MH4YUZMFjgMcm9WVGUME3PwLRhM8hm+iRs4tpGZz8KG2KTUnA2MrMlW4AKOhvJ7tjAl/SwqV4J26PvioQNpnzL4o5Y2Tpp03ajLmGanqhgw9dg80vsL4bZUNkGUkFhY2txx7h9TYMGDfSRwoYYx+QeHC4HKBl9A5sjb19GUSYdjc0glU+mz7awCU7bjcNuoixh2hA28HEmkSwM/Ak+u0zgexgQYDmBNWvWqCSXotZE8P44K4qE7pXAzZX0UpRkbFwOUD7VvU3NpLOZ6UN5R0o8InpdFMRxT9v10W7EZiBqsJO2SSTjKz17mYDgwXo2Nu3GVNl7LZuHiWmCe3AEZ6AktccmV8ZGhI0LGRvXe2xsZGxM240IXDjTXH1EImxsCeK4p+1GWVYwZTc1a9ZML4xn2m5kWYlcYtgFf8NSVDxQ2DiAyV4JW8IG9W7UvSvK2ARH3qbT16ZGUXH02CQ1Y5NPX5YLwiZum/GxhAlfZstuRNg0a9aspIXNfhGVoky2S0QBhY0DmKxd2hI2EnCwd4ncbJkQR4TUdbFNki42gfpYUrCZscmnv8YFYRN3gIrDbpLcmyVCpdSFTYPdGRv0gMnSEIUAf7xz5079NYUNca52aWsEFSxD5cpKBYWPDWcTdxOojyNvmwEqX2HjSoCKy2bisBuT/sZWKarUhU2dOnXS5cBi7EbEMHrIZGNNl6GwcYBS6JUQRyOOJBc2G4h9bAJNcilKhE1FvRLy/VWrVqUb8U3iU8amFARxvv4m6cKmcuXKaQFbTDnKZLtEFFDYlHApymQPi2yR0KRJkwpfa3OGS7BXIq4bOKqN6UyOvG0JYrGbikbeSLnXqFGjTFAziS/CxnSvhA27werTK1as0F+XesYmqgZi+dlcbQQuQWHjADZSw7j5Mc3cFOJomjZt6kXGxvUAVSoj73ztBiLUpt340jyM6yfbTiQ104esHd4jshUynTsfYWNjsoIv/mYthQ1xOUDtvffe6UyEyVFUmIyNOBubI28TvRLFNvSVQilKhE0+diOvkdl3JvEtQCG7ZaJXwoYgFr8Be8B2I7mQjA4GeeKHk2o3a4ooRVHYkIKNxkTGJjgF06SwCZOx2X///dMjryQ6mrp160bS0Jf0UtTmzZvTf88XYeN687DpAGXD1+TbOCwCTz4L0wMpZIhM2E0DlqKIDcRoxACTOPoOM/IWYZPUkTdEjWRZCu2zwbR0G8LGhs0gs5DPwpVJtxsfhY0Nu8l3qrcg5SrTAykId9mjinYTLRQ2DpD0URRGJmFKUTYDlIleiSgW6cMaP+IUTdiNDTEctJl8GrlLRdigbFJof5zpQZSNTF+YGZg2M8TymWDFeazSHBf7sRRFbCAGZ3oUZcrZQCxg5eGwwgaOxvSuuyYCVBSjKLEZXMtsm/z5HqDCZPlKQRDjGkjPSKF2Y2sQZaPHJt+MjS27MTEDE7AUVQE2NyZMMrZKUaaClAQo9JbkMzJp1KiRPmJmQxR7nITBRM07CmFja+SNhmdTYtMnYWNCECP4RSWIk1yKCms3UooybTe+DKISL2wOOuggdeedd+raIIkGZDJk59uklqLClKFkcTwJ2El3NoX22JgOUMHPI7g6sysN564IG18EcVJ9TbCkVNFUb1dKUaZ8zRqWojLz4YcfqlGjRqn27durkSNHxndWJYQYDOqscTtF2xmbfAOUK+lhl3tsTGdsMHsENmpy9F1oxmb16tXptVpM4cvouxSah3H9wwibpGdsGrAUlZvevXurSZMmqREjRqg77rhD9ejRQ33yySfxnV0JEDQYU0tV2xI2+QaoUhpF+RKgYJumg1RYu2nYsKE+T5TKit3N2LWNU30tYZr2NRC0P/zwQ0EZm6QKG7EZTDiQjSzDfqYyAzORwkY4//zz1bx589QJJ5yghgwZok4//XS1cOHC6M+uBDBdUrDR0CelKB8yNr6UFMRuTAUoHwQxGmshbkzbDUpzsmqt68Im6T02+FwgNCFwxRZKfRBVf3d2OLidRhggiMS+TSwtYX1W1KBBg9Sll16qXn/9dXXIIYeo3//+90bq74899phq1aqVTo/37NlTffHFF8pXTI+gbMxwKSZjk/RRVKE9NjZSw6aDVNjerOBrTdqN2AyElexXFRe+ZfqCNmNiywIRJ3h/Fa06LEhmB5meQjIaxdpNPms0FUOVKlX0xI1C7UZ+xtQMTOPC5sknn1SXXHKJ6tKlix7RDhgwQJeirrzySvXwww+rKVOmaIGDY1y8/PLL6sYbb1TDhg1TU6dOVV27dlXHHXdcuq7qGzYClOmRt4wS8x1B2ax7+9JjYyNjY1LY7NixIy36ROS6KoiDWb64y8m+CRu5j5BFMTHpJGzjsPglLJoJ4WWyhGkqO1ys3fjWXxNa2AwfPlw7fpSixowZo1NUX375pc6gXH755Wr06NFa5Fx44YWxnfCDDz6oLrvsMnXRRRdpEQWxhZVJn332WeUjNktRpoVNmCBcKhkbXwKUabuR94eAEyb9bVPYxG0zxdqNjRmY8M2yfYgJuxFhI0tG5AOa4m2UME3aTYPdvrcQ4eajsMkvVxdiHRtkdNBYHAfYMBBCaujQoenncNMMHDhQTZgwIePPbNu2TT8Ek9MOXS1FUdi41QSKkWLYkX7SMzby/iBqJDCGsRspf5rAF2FjYwam7E2HQTDsJkxZ0VTGRl6PnzXpb0z5GsCMTZFAKSNzE5ezQ4d2eaPF/7MZJGZw4SaWR/PmzZVLJH3kHUzvui5sgv1hppqHUXIppC/Npt2YFDZhhZuM1E2Wpk2VL6MKUGHFok89fWGnettsIDbVYwMobCJQ6P369VOugOwOHI88XFs92ebsFhMBCqlvyZiFeY8SoNBnYaqhTxwNFgisXr167Cl6acQL20AMsZj0pvNC7wspKciUXxP4lrExHaBMDqSKydgAlqL2hMLGwMVBGrW8qsb/szUYIkDBcIIPl7A5u8VkrwRmiyCY5wtGlRDJCOKFzhxyde+WYpfHx3UTsZfUWVE+ChuTTaCYtht2EULbwsaE3RQqbGQgRUG8JxQ2MYMRLhYF/Pjjj8v0ReD/vXr1Uj5is6SAWQpxZ0OCzdFhxAKmKNarV8+oszHpaIpxNvKZ7r333rFPL7bdPFyosLExu8WE3RSzJomNLJ/pgVShwsaGIBahZ6IU1WD3NS/k/VHYGABTvf/2t7+p559/Xs2ZM0ddddVVutyBWVI+YrMJ1MQoqpj3ZzpI+SJsbDkaGxmbsO8xGKBMrJti2m5QJpW/U6ggZikq2lKND3bTePfnUUjvWeJnRbnAWWedpZ0WNuNEPbRbt27q/fffD23ILoBsiZQ/TBoNMl8Y6WP6J24uyYy4KGywwrXpjI2pGSMy+g5barMhhn0pRcnrMYMS52kiaJhsHhZfAVv1RRCbEjYQsoU2Dye9N6tREU31haxDZhvvMjbgmmuuUYsXL9ZNqdi7CqsP+4gENJRo4hQXNp1NMUG4mPSpLwEKMEBFZzfo45JeLpYwSyvThynlmGUYdh0bGxkbCG+ZVOG6sFm9+2cobEheyE2E5a5l5+SkNfSxFJUdCTBh3x8zNrkpFbsJK2xE6JkOUKYEsZShkHENO6vRdMYmeA/Vrl079r/XeHcGC0tLhFkBGj2s8pmEFYs2obCxiE2DMdXQV0zDomlnYzpAFTqKSvrI21e7MVXCLFTYFFqm8U3YFPL+xM4Q+FGijxv5LJBdzHdPq2KoXbt2eqJBGH+DqgLEjY2BVDFQ2FikkOW/fS1FFRKETaeHTQeoQhcFE8dk2m5slKKKsZukCuJChY0tf2NKEBfTCxLMmpvwN6ZtplKlSunrHsbfiK9Bq4QvG2ACChuL2BpB+dJjk/SMTaGLgtkOUBjVxjnjCL0HEgR9sBsferOCjbVJFcTFZDIR+E0OpEz7mkJnRvlYhgIUNhax5WgAhY39ACWOptCMjWlBLMIm7p2ai93TiD02mc8RDatJ7rEptvfMpL8xuYZNMaVvHxuHAYVNRGBzzldeeSXUlg3F1IRLwdnYKkWZFjaoY8tsDpftBgsCyiKLcdpNsAxVyJ5GJgOUyY1TixE2EqDQaxFmBXCfSlHF9p4lPWPTqIhSFDM2JcrNN9+s19j59NNPvcrYxOlsCt0A09ZiazZG3lLXDzOKslWKgqgxEaSKXSHXpLDB4qBimy43D5dC2dsnu/GlFLWawqa0KWQ3apsZGxOzotCLIZmIYppAZbG1pDUPIxshDiNfu0EglTJQUu2m2BVyTTYPS/kSM1tMbW9RSGbBhUGUyxMVSiljs5o9NiSssFmxYkXeP5N0ZyMOombNmgWlv4OLrZlwNqZ7bArps5HX4TNFaSiJmb6oeiVMB6i4N04tbzMIOjIV1+UZmCKGIcrDbtxpshRVKj02q1iKIvnSpEmT0BmbUhE2xax/kPT0cNgp38GSgqlAGsREKcqnJlBbI29ce2zJkq94c8HXSBbXVbthxmZP2Dxc4oQtRW3ZsiUdHJJa9/ZJ2NhoAi1kyrfN8qUvdiM2g+spy9YnKUBhI0z5bPK1G5vCBqsAyxoocdqNTxkb9tjEC4VNxBmbfEtRYjC46U2mI30KUCZHUcGRpKkem0JKUbYdjQ/Nw7h+sppr3EHKdF9Wsf7GliCOuzcL2at169bpr5mxyYz4DLy/fEuC7LEpccJmbIIjbxslBR96JUyOosTRYDQcdp8ZGz02zNi4sdiajb6sYoSNrQAVt78RUQMK3VA46T02DRo00PcGstP5zKjDxA/ZqJnCpkQRRwNHKgthuexoTMxuiWJPIxsByqTQDNtjY7MJ1LQgLsZuCt12wIeRdyEDKdv+Jm5BLDYDUVPo3ksibGAz+TZl+2Q3VapUSd8X+fgb+Uwxe7N+/frKJyhsIgIXXm6ofGqYLjmauNaIiSJjk/QAFbbHxnZJQT4fEYKu242MOJNmN2EzNrYFcdwDqSgGUfKzKNOsX79elbq/WbHbtvAzhSyUaRO/ztZhcOHDGI0rJQXcxGhkjgMGqIphKSoeu5ERZlIFcRhhgwyy7ZJC3Jm+KLJ8KEFjZWaT/sZ0f2XTpk31cdmyZRW+dvny5WVszScobCw5GxE/thyNieXxfQxQpptApaSQ77YKLmX64mDr1q16vRPfMn227CaMr0H/WDGB32W7Kbbh3LS/sTEDEzRr1ixvYSO2JWLIJyhsLNW9RQ2LoZkGosZU3duHAGWrCRSOVLZVyCdrI3YjtpbUAIWybjHXwlSmz3bzcBhfgwBlq6TgQynKlN2g9G8r09cshLAJ2o1vUNhYytiIYdkSNibTw1FkbJJaikKgyXf0jUyGBFJbdiOZibjFMAJMMU3cLEXt6WtsBigffI0pu8GWKNKcTGETDxQ2ljI2LgibOEdRGJVE2dCH3xXnRpi2AhQ44IAD9PH777/Py2bQB2DjPE00D0cVoJLedC6+BmK3IrHgQoAylenzIWMjnwEGNaZ3Wm9WgLBhj02Jk+8oCmo96c4GvxOLZkUlbNAAKZs/Jk3YNG/ePJSwcSHL53L5shQyfRC30uha0UDKdtnbRCnKJ0EcXMPG9BpmzXbbgNhELthjQ0J1nGMBKAR9GLWtXom4g5Q4GjQpY8PGQsGIRpZjj9PZ2GoCLSRjQ2FTMUlvHg4OpCoKUi6VolzP2JgQxDYHUc12+w7088nAMxsuDL4LhcImQlq0aKGPS5YsycvRYMouZiokWdgUG6Ag/kwEKVtNoL4KGywRkM8sLluzW5LedB4m0+dCxsaH6d7BnzcxiLJhM40aNdKN+aga5Mr0YRkQmcxAYVPiiKOBQeTafM8FR+OLsCmFUZQIm6VLl+Z8nQQweb0Ngp9PHEEqqgAVtJm4VpG1tXFqoQMpmwHK1KwoH5qHba1hI309kunLVVnAshKwb7zet529AYVNhMAZS9kl1yjKBUcT9ygqSmGT9FGUTxkbZBjFxl0WxGIzcM5xBVM07kpDu8vCxoWSQpyDKFxjGfT41DxsawJAszwaiIPLSshyFD5BYRMhKJtI1iaXs3EhQMU9iopq5G06Y2OzxwZ2kSu74IrdxDkzKiphg1Vk0d8Vp92IzcDxF9NHVij5+BrsWi/nmdRSFLY/kPsmqkyfieZhl4XN0t3ZY9u+plAobGIaReUqK7gWoOIQNlGlhkHSe2yQGoYoxsyvXJt9loLdxFHCjMtugmLY9OyWfDM2wSUCbJQ+TAyi5Prib8hEg0Jhxub/WLx4sT62bNlS+QiFjQVnI9+z2SvhU4BKeikKzlj2fspWjsIMBmn2S7Kw8UkQ2xTD+fqaRYsW6WOrVq2UTeQzQu8hBLzrYhjXtqJZQz722OSb6aOwIRmNJlfGRpxN69atlU18ETZxl6JsN4EGg5Q4lPJA8GCmAkSQzSUC4l592Ce7sT3yFl+D88hWFnRF2ASDeNTlqKimeoN69eqlv163bp1Kot20adNGH7/77rusr6GwIaFGUQhOYjS2nY0vwibukTf6EATbzmbBggUZv79w4cK0o7G130/cdoMFGGURxiiCVNx2YztAoYdI3mM2f+OKsMEU47iazqP0NThPEe5x2Y3tQVQbChsSdZoPqzli/Q/cQCxFuTXyxoyfGjVqKBu0bds2L2FjO8sXp91IIMF1iCJNn3Rhk89AyhVhY8Juotq5PO4+G9ulqNa7fQgWis2WPaOwIVnVcKYZLhKg4JBsT6OTG8vl9UhM90rYaAL1VdhEPSsqKIajuA6mBLGNmXSCBJ5so28XhU3U/iZKX1MKgrhOnTrp9yh+pfwyBvKZUtiQtCEgG7N169aMjaBiSEkeQQXXlfApY2Nz5O2jsIlr5B2FzZRC8zBo3769Pn777bfOC5u4ZkZFbTel4G/a5ChHSbYGAqhu3brKRyhsIgaiRoxm/vz5zjYOB28s9DVEOQMADh+9RFFnbOBo4tjh2yVhA6eSaasCETZiW0lsHo6yfGlyurerwgb3tcykc0HYxCWIfcvY2O6xqUjYzJs3r4xt+QiFjWFnI8+5EKDimqkgjga/HwulRRWgIJbiWBTOhZIC1rJBfw/eY6Z+CcnkuCSIfQlQSR55H3jggfr4zTffZPU1+Byi+kxLIdNnShDbXFeoTQ5hI7bUoUMH5SsUNjHQrl27rMJmzpw5+njwwQcr22DqsDTLRulsoh554xyxy3dcQcqFkgJmOmWbGYVpp7IhnQSyJAsbX0pRLggbGUQhE1x+fRjxNQcddJBygbh6+nxtHnYhY/NthhglGRsXfE2hUNgYzNig92Tu3LnOCJu4glTUASruIOWCo8kliCVAYRad7XM01TwcBSZXHraZ6cO0b/iW8qNv8TWuCBtfBHGcdoOSvyxpYPNePnh3/Pn666+zChtmbEhGo5k1a1aZ57FoHzrO0YcjPRVJHEVFXVKIu6HPFWHTqVMnfZwxY0aZ58X5dOzYUbmALyUFsb+4VpF1IdOH2WMyshYhU0rCBj13PmVsgmtm2SxFddrtazDBpfxChFKKYsbGEMOHD1e9e/fWZQmXu7W7du2qjxhBBW9iGXkjo4O1OpLqbKIOUKWSsenSpYs+Tp8+vczzs2fP1sdDDjlEuYAvzcNxryLrit2Iv5k2bZrTwiaOQRSugYjWqIRNnBkbsRm0AUTRf1jMPdx895pr4l9kbRu5D9k8bAjUkM844wx11VVXKZfBDSaL7wVH3zLydqUM5VMpyoSzsVlSCAaomTNnpmeVBe3GFWHjS/NwcBXZJGf6unfvvoewwcy6Uih7iz/AYDeqHdbjzNi4YjOgc+fOaX8jiA1B1GDjVF/xStjcfffd6oYbbkhfEJfp1q2bPn711Vfp56ZMmVLGEbmAL8ImTmfjQklBemzQKI0avPRLINUuzkbSx0ldJoC9WdEJGwQrbDiJzLYLMzDj9jVxlL2TbDNA4mhw8D116lTnYlTihY1PiLARQwGTJk3SxyOOOEK5gi/CxoSzsVnzlgyDOBsRwRA4SA8jde2Ks4l7mQAf7AaC07VMH/olYCtg8uTJ+njYYYdZW03bRCkqzrI3+iEhDpO2ho0A2wATJ05MPyfx6tBDD1U+k3hhA8OEAwo+THDkkUfq4/jx4/URDkdG4RQ2bmZsbAco0KdPH30cN25cGacDR2OzJp9tmYCoZkYh+4PVun2xGzSBymKRtoMU/r700Xz66adl7Obwww9XruBLxgZ+QDaajdpuXBlEBX0NMja4j2HPEq969uypfMa6sLntttv0iCLXo3y3fxhGjBihDVUe0jAVN0cffbTeCwprkmA12Q8++EA/jxG5S43PvsyKMlFScEHY9O/fXx/Hjh2rjx999JE+omneJaJuIBabgXjD9GXX7UbeN+7xqHo7imHAgAH6+OGHH+oANWrUKP3/Y489VrmCLxMVIGqk8TwuYWNbDMtSAShTYqkACBr08mG9LNhzr169lM9YFzY33XSTni2U61FMjXjo0KFajcoDU65NAMMV1fvGG2+ot99+W3994oknKpfwxdnEWYpyKWPTt29fXZLCWhIYSYndnHTSSSrJdhP1BphxLxMQtBkXSj2/+tWv9PGdd95RX375pVqxYoVuqMUAqxR8TdQrK8ctiF0QNmDIkCH6+O9//1vbDjjqqKOcyQ4XShXbJ9CwYUP9iAtcIFsX6dxzz1Wff/65uvPOO3W9FpxyyinKJaJ2NpjNE+UGmKVWisJIEeIXYhijcDhWvHc4m1IQNr4EKFcazoPCBraD7ThE5CBouRSgglk+ZAmk3FMMcdlNXAMpyYy7UIoCZ511lnrsscfUiy++qEvMADOPfcd6xiYMuGkxywhHBFB8jUdw0SOX+M1vfqNvZtzIOF/01rjUXxNHgFq/fr12Wr4s0IdZPSI6XQlSspyBOG38H1mcUsnYRImJjI0LIDtz2WWXpe9BcO211yqXkM8K/iEqnx1HdjjOgZRrGZs+ffro5nMspYJrgiTD2WefrXzHK2GDzAdmhgwbNkxfBHyNh8wgcQ300vzP//yPNhasC/D88887kbY2EaDgxKJchFAcDZx2cI2XYgn2FrkSpAYNGqRuvfVWXes+/vjjdTnVNaLeViGuABXXyNulvizhjjvu0Fk+iJy77rpLlzVdAvYsPiEqu4k7Y5N0YVO5cmUdl9Du0ahRIx2vXMkmFYNbw8AKGDlypH74xMknn6xWr16tXMWXkbc086ExEuImKkcmDhazfCQV6wL33nuvbnx3TQjH3Tzsy8jbtYwNwIJq0mzuIrBlfF641riHo5jI4asgdkk8dO3aVc2fP19/7aq/SXTGhsQnbKKaFRXXCAojPTnXKJ2Na70SQVx2Mr4I4lIpRfmCfF6uZ2xKSRADmYGcFChsShwZOUQVoOIaQcUVpFwsKfgAm4fdFcQuI0tdRCFsghtgUhCTIBQ2JU4wQMmCYy6OvONKD9PRlEbGBj15aJCMCgriwpDPSxqciyG4MrBvgph2Ey8UNiWOBCg05G7ZssVpYRNHepiOJtnCJrjODO0mWaUoER1RL+poonmYdhMvFDYlDhyCOP4ogpSvGRuWFOz2SsRVUsDKwHGsIkthY78UFVycL+r+EGZs/IbCpsSBQ4hy9O1bxoYjqMKI0mZQAqUgLg2iLEXF1ZcVV8YGWXGZpEF/Ey8UNiTSmVEmnA17bJIlbOLslQj+TgriZJai4hTDKM9HUaJ3dc2spEJhQyKdGRWns2GPjTvEkeXDWkJYXM6H0Tftxn4pKs5BFOwbZcwo7Ubes81tfkoFChviTSkqzuneLCnYLylEvQFmnP0SFDb27SbOQRTsMGp/Q5sxB4UNiUzYYN+ldevWxZ6xYYByZ+SNNH2x06jjDFCAGRt38CVjE4e/YV+WOShsSGTCBqJG1sKRYBIlDFDuEHTOxQapOLN8cfRmbd26NS3mGKSSmbEBzNj4C4UNiUzYSIDC9No4dqOOI2PDUlRhoP9APrNig5SpkXdUASp4n7i050+pNQ/HbTdRC2IKG3NQ2JDIZkWZcjQILDt27Ijkd9LZFF9WiErY+JKxEZuBqJEGU2J3HRsfBDF9jTkobEhks6LiDlDiFIH08hQLnU3x16PYaxG33TBAuYN8ZpjiX+zgROymYcOGyodSFJcIMAeFDYmsFBV3zRvlLQmmUTgb9APR2RSOrOhbbMaGvRKlQ/Azi2og5VvzMO0mfihsSOQ9NnEFqKjLCps3b9argQL22CS3FBV1gGJfVuFUrVo1vVZRMeUo3LuycB4FMSkPhQ3xSthEWVYQR4M+iag30SsFfBE2EqAQDDGjqVgYoOzPjBKRCqEUVwM3m4f9hcKGeCVsonQ2wXUl4lgYLulELWziKing+lauXDlyQcwAZW9mVNyLOgL2ZvkLhQ2JXNjEFaCidjbsr7EvbOLeABNA1ERZVmCAsj8zyoSvYSnKXyhsSDqVG9V0bx8zNsSOsPn555/Ts2N8CVLssbFfijJZ9oavkYVHi4HCxhwUNiTtoItdWyLu2S1x9djQ0dgTNhKg0FAaxwaYcTQQ027sl6JM+BoRw9h5Poodvmk35qCwIelpu7h5cRP7kLGhsEnGOjYmbAbQbpIpiOO0m9q1a6dXUGeG2C8obEiZ5tlCgxTKCeKoTKWHi4U9Nu4EqDjLUMHfz4xN8pqH4wI+MaoMMdfMMguFDdHNlcWOvuXGhzOQDJAvI2+OoOwt0OdjxoYBqjSah6Ps6UMvmfTp0G7ih8KGROL4gxtgxrl/ThzNw3Q09jI2P/zwQ6zL4gtsOncHX5qHQVQZG7EZlLZq1qwZybmR7FDYkDKj70IzNr45GsCRdzTCBoveFbrwnY92Q0FsXxCbaB6OMtMXtBmumRU/FDYkEmFjeuSN1O727duL+l0ceRe/TIA46ULLCqbthsLGPnItfGg6j6o3izZjFgobEonjNxWgMNqTYBrlKIoU1ptVbFnBtwCFvcWwMzWg3RQ3iCr0/jWxqGOcGRsSPxQ2JNKMTdyOBsFUzpWjKP/LCr5lbIKrczPTZ+daBPf88qV5mL7GLBQ2JNIem7gDVJT9EvJe45zFlXSKnU1neuQdVYCqUaOGqlatWiTnVmrItcBK57LqdCE2g88fa8341DxMYWMGChviVY9NlEGKwqZ0MjYSoDDSL2YVWdpMdDZTqL8JNg7H3YjLUpSfUNiQSHts4h55RzWKQp1egnHQ0RJzwmbnzp3pwBa33aDROYpVZClsigfXQQJ8IcLGVJYvyt4s+hqzUNgQ70pRUYyikAbftWuX/ppBys4ifbh+EJgYdcs1jYvg3yjGbihsoqGYa2Fqcb4oMza0G7NQ2BDvSlFRjKLkfVavXp0LZhWBjECLCVCwPcmmxAmFTbKEjYmMTbDsXcwO37Qbs1DYkKKnYOKGt9FjU0yAYmrY/rUwaTNRCWLaTWkJG7EZNDnLNP9CoLAxC4UN2WPRrLAjE0yBldkNpkdRhUJHY7/fybSwYcYmGQMpU6sOg1q1aqVnv9Hf+AOFDSlzw2E137CzRmQEBSeAhw/Nw3Q09rMgJkfegILYHXzJ2ES1wzftxiwUNkSD9SBk88qwfTa2Rt4sKfgtbGyVohig/N5WwWTzMGCmzz8obEh6ZFJoetjkVG/AAOUOxYhMHzM2FMSllbGJwm6CS0vQ35jBG2GzaNEidckll6jWrVvrWSxt27ZVw4YNK3ojRFL8KMrHjA2FTfQiM2xvFjM2pUsxwmbVqlX62LhxY+WD3WDDXuwxBmg3Zoh/jmVEzJ07V6878tRTT6l27dqpWbNmqcsuu0x3qj/wwAO2Ty8RFDrl2+QaNkFHg14gPAqZrs2Rd7TXAgMM3Ithlri3NfKmsLFPodcCMUAEcaNGjZQPAymxGTQhYysOEj/eCJvBgwfrh9CmTRs1b9489cQTT1DYRESxpShTwgabD6IfCKMgnGuzZs1C/w4GqGhAszjWAtq2bZt2/GGEjY/TvWk3doUNXi8La/pS+g7aTNxbQBDPSlHZ9t+oaMVSOFxMRw4+SDylKFOOJopVZBmg7F8L3zI2KLXRbuxei9WrV6c/f1ObkNLX+Ie3wmb+/PnqkUceUVdccUXO140YMULvSyKP5s2bGzvHUsnYmC5FRZEeZinKbibE9KKOUawiu3nzZr2/FaDdRFf2lgyMi/01UZaiKGxKSNjcdtttetSX64H+miDLli3TZakzzjhD99nkYujQoTqzI4+lS5fG/I78pdBUvekAFXV6mJi3G/TjIJtqo6SAfiCIlEJtBts/7L333pGfXykh9x1EDfZtC5uxMdVfA+hr/MN6j81NN92kLrzwwpyvQT+NsHz5cnXMMceo3r17q6effrrC34/6Px6kYiTASAbG1VIUYHrYHQq5FmIzaKY0JRLwd6pWrapXyYYIC/t32SsRHWj4xwPN/7Ab2e3bRWETVXaYvqaEhA1G+fmO9JGpgajp0aOHeu6551TlytYTTolCroMEHZczNixF+Z2xsVFSkFVkV65cqYNpixYtQv08xXD09zB8Oq4FlvEII2xM2g0zNv7hjTLADdC/f3/tjDALCsEUDgoPEg0iTMJkbDDiwjoNwZ933dls3bpVPwCdjR1hI/ft/vvvr0xSTKZPAhTFsL3BiQhiGxmbQtZqAhQ2JZixyZcPP/xQNwzjccABB5T5XjHbyZP/HyklhcnYiKPBDAWTDr+YjI04GmT89tlnn8jPrdQoRGTayNgUazcsKdgXxDZ7bNA4jn4gLDcRBgpi83iTsUEfDgRMpgeJBsm4wNHkO1NBAhRG3ib7DorJ2IijQV2f5Uy7I2/TwiYKu6GwiQYRJyJWXBU26AWShfWKGUjRbsxBr072yNhg4TsZneZbUuDIu3QpphTlk90wQNnv6bPRYxO08bATKwDtxjwUNiQNykmSZs3X2djqlShmFVk6Gneah03bTaEz/wBLCvYzNjZ6bIJ/L+zECsCBlHkobEhRoygGKFLIyNtWKarQmX+AAcquWMDaQzJRwbSwKcZuOJAyD4UNKWpmlK2MTfA8w6xcGswsmFx3J8lIkEHgx+J3LpeiCskSCAxQ8dzD+V4LERVYlyxsA68tYcNtOOxAYUOKmhllK0CJo0E/UKG7kUsJhRQHMl9YjdeHTF8xI2/ajV2RGWwcNr1AYqF2g+UwROxT2JiDwoZ4mbFBP5CsVhrW2UjGhgEqGjCzLMzoO1hS8KkUxUyfG2Vv02WoYuxG/Cj8FbfhMAeFDSkqY2Nr5F1MWYEBKnpEoIg95EJegym0ptcRCtpM2KUiTO9GnnTkWmAPP9k3zHVhU4yv4TYc5qCwIQWPTBAYbGVsohhFMWNjR2QGy5e2SgooD4TZfBGLs0nzMO0m+hJmPhniFStW6GPTpk2VaQqdFUUxbAcKG1JwKQrlBNkl2XRJIYqMDQOUnWthM8tXq1Yt/QgbpNDHJRkeWQuHFF/ClICfj91gA2RbwoaDKL+gsCEFl6IkQKF2XLt2beWLs2EpKj5hE6YUZUMMFyqIJUAFswzE7LXwWdjQ15iFwoYUfAPbLENFkR7mKMpOgJKSgi1hU0iQohi2fy1cEDbIUssGuvlAYWMHChtSBhEpEC0VNVfamupdTEMfSmfimChsokNsIJ9rsWzZMn0sv5mty8KGYtidjE2TJk2UaTADs2rVqvprCmL3obAhGYUNmisr2ijQpqMpNGMjjgZOijt72wlQImyaNWumfLMbBig71wKLcMpAykbGBk3uhQykKIjtQGFDyoBVPeUmlJJBNr7//nt9bN68ubJBsY6G0y/t9NjYFjYMUO6Q77WA8MFinLhnbWeIC8n0URCbhcKG7IFkYPIVNrZKCsWMvBmg7K0PY9tu2GPjXoa4Il8j2WGIGlvN2xQ2/kBhQ7IKG3EmrgeoMPtF0dHEG6B27NiRc5dvLDEvJU6fSlHM2MSDlJUki+di47DA3ix/oLAheyDOw/WMjYgTiJqK+oEEZmziAUvGi2AQu8gVoGrWrGltd/VCSlHM2MSDiNskChtkLmk3dqCwIQWVoiAmbM9uQQOwbCyXb5CisLEbpIJi2FaPE0fe7tkM7stc2yrYnqhQSKYvOAOTwsYsFDakoFIUHD1mTiE42XQ2YYMUS1HxB6lcGRvbjcPlA1S++0Vx5B0PWMUZExYq8jeLFy/WxxYtWihbhM30cQNMe1DYkIJKURK80MyHG9eXURQzNvEhmbtcGRvbWb5ggEKGIN/9opixiQcMjPLJ9ImwadmypfJh5l/5QRRnYJqFwoYUVIqyPdW7fJAqxNmQaMknQLmQscFeUbIFiKyNkgtMM5YeLtpN9PgibMQv5mMzgFk+e1DYkJylqGypetuNw4U6G9urJZd6KUoClG1BnO+SBgCihhtg2hM26OdbunSpU8ImnxIms3z2oLAhWUtRaHzLNttoyZIlTgmbfAKUCxswlnopauHChfrYunVr5YvdiM1A1Ngsu5aqsIGQQD/fXnvtZTXTF2ZV9mAvjmSViTkobMge1KhRI30TL1q0KONrvvvuO31s06aN8mHNHSkpSC8OhY35AIVRrs/CxtZmr6VuN5Llw+ts7qwOUZvvquwubBJcylDYkIy0atUqp7BxJUDlu+aO1LxlIT+OouILUOvXr1ebNm3a4/t4/qeffipjXz7YDcuXdkuYLvTXhF0pGVAQ24PChmREAo84FdczNmEcDUZdslMviY599903vbGolCoziWE4eizQZxNmbNxBBEu2QZT4INtiOKzdMGNjDwobEjpjg5G31JhtZ2zE0aCevXPnzpyvZYCKF0xpFaErwjeTsPE1QDFjEw9t27ZNl6Kw5YbLGRsKGz+gsCGhR1ESoLCug0ybtQVKSmgqRP9GRVO+2ThsLkgtWLDA2fJl2N4sCuJ4QQZVMn2Z/M23337rRHY47CxMCmJ7UNiQ0BkbGY27EKAqV66cDjgVBSk6mvhp166dPs6fPz9rgBLxYxNmbNzK9IlNZMr0zZs3Tx87dOigfLGb4EQFCmLzUNiQjIhogaMpv2aDOBoJYrbJtxGUGRu7GZs5c+bo48EHH6xcCVAoq2YqfwSh3cSPZGPK2w2a0GUNG5+EDSYqQNxAtHGignkobEhWR4OplUHHInz99df62LFjR+UC+TobBqj48UXYYGdx2aOoorICS1Hxky1jI1k+lKtcWOguX18jNsWJCnagsCEZwc3Yvn37MgFJmD17tj4ecsghygXy7ZegsDEXoNBPgxFrcBVWWYnVhZF3cPPWXEEK70EWWqPdxG8333zzjbNlqEKEDcWwHShsSFZEuEiGRhz93LlzncrYsBTlDtgqAXsxYXXWYJ+NiGM0peP7vtiNrH3EkkK8dOrUSR9nzpxZ5nnxNa4IGxEqP//8s35kg1k+u1DYkKxIySCYsUGqGFstYHViF5qHw4yiXNiAMelghlqXLl3011999VX6eRHHLpShhHwyfWJTLCnES+fOndOL9AW3KxAbEuFjG8zewnpNFe2JxoyNXShsSIUZGyk9gRkzZqQDFIKYSyPvXI4GYkxmKdje3yrpdO3adQ9hM2XKFH3s3r27cgXZiDPTYoKubfaadCAWZKAkPgZMnTpVH3v06KFcoUWLFhXajYhlChs7UNiQvAKULH43ceJEfTziiCOUa2vuZFslOehokGniDs3x0q1bN32cPn16+rnJkyfr4+GHH658shsRNrZ3Iy8FJNMndoOeLBEPLgliETa57EYmXNBu7EBhQ7Jy0EEH6dkjmzdvTo+iRNgceeSRyrUAtW7duvReRLlG3uiXIPELmy+//FIvFYCZdbNmzfJS2EiAYsbGnN2ICJ4wYYI+Hnjggenyj0t2kytjQ2FjFwobknPxu549e+qvP/vsMx2gxOn06tVLuQLq3pKFyRakOPI2G6CwFxRmE6GMOXbsWN10joDgUn9TPiNv2o05+vbtq4+jR4/Wgvijjz7S/z/mmGOUSzBj4z4UNiQn4lTeeust9cEHH6ht27bpWjhGUS5R0eibvRLmQLlPghRs5r333tNfDxkyxKlsmdgMZrCgBysTDFDm6N27t7YdNGxDEI8aNUo/P3DgQOUSFWVsMCNQmodpN3bwSticfPLJWi3D+DGj4bzzzstrrxdSOKeffro+jhkzRj3wwAP661NPPdWpAJXPbuQUNmaBiAHPPPOMeuWVV/TXJ5xwgnIJzHSSqeflF6EUaDfmgF8XEXP55ZfrNWywiKJrwqaijA1iEjJO1apV4xIBlqjsW/YAThIG/+9//1uvbiqBl8S3cFafPn10KeHzzz/Xz1144YXKp007AQOUWc4991wdqDDNG7PR8LkPHjxYuQTEea5MH4ITMzZm+e1vf1umv+ass87SfX4uChv4lOAilJn6slDOJ+bx6lO/4YYbdNMqnBHSlrfddptuZt2xY4ftU0s0f/nLX9LNezfffHN69oJPGRvZWVqcEomXBg0apDN8WP/lySef1Ft0uEYuYYP1VGQfKZd6g5LMcccdp0477bT0Z/7HP/5RuQaWl8BSF5gpmmntLIph+7jnafIETueFF17QAifXwlnoCcFDyDZrhmTnsMMO0/Vk3MSYKeUiuTI2GHnL3kUu7CxdKlx99dXqpJNO0il5V9fzyCVsxGYQYJF9IvGDDAey8eixwb2KJnTXgKiBaIGvwaN8Flh8kNgWMY9XGRtw6623qr333lvXxxFs33zzzZyvHzFihKpTp076QRVdGPjsXBU1wYyNZGaCoBSyceNGXXpwZbXkUgEZMldFDRB7CG7/IMhzruxiXyrgPsVKwy6KGkH20Su/t1Vw4055DSlBYYNyEgw510P2CwG33HKLmjZtmp5tAeV8/vnn6xF5NoYOHao2bNiQfmRrEiR+I8EHi3oFl2QPjrwxsuLImwQRsS6bLQahsCHZkFmhuYQN7aaES1E33XRThc2obdq0KVO7xwOGhWX9kYFBn022dVXQVY8HSTa1a9fWtgDhCiGMEqXAMhTJhmyuCGGDAVJwtp8IG9oNyWU35WHGxj7WhQ2mwxU6JQ677oJgDw0p7dE3hQ0JA2wCTc1YfBKbpAb7JZixIRUJm/IZG/RwYmFKQGFTwqWofJk0aZJ69NFH9b5FaPTD6pTnnHOOdkwurYJL7JcVgqXL4AiKwoaUBxMPJCNcfvRNYUMqKkXBRoJTvsVmGjVq5NQ2EKWGN8IGC2m99tprasCAAVotX3LJJXra8bhx41hqIjmFzcyZM/URDYmEZBt9z5kzJ/0cRt1oOkdpiiNvkqkpHs3NWGVYMsJB30ObKfFSVL507txZZ2kIycYhhxyyx67SWONIAhZsiJDyYID09ttv60kJgmz6iiwf+rcIKT8tvWvXrrq/E5u9SgZHfI+La32VEt5kbAipiEMPPVSPsLEMgOzVgvICxA02yuS6EiQTsuO4bPAaDFAIXoRkokePHvo4ZcqU9HNolQDdu3e3dl6EwoYkCNS0JWuDniyA0ZSMoFzb34q4wRFHHKGPWBQOTcRAsjcUNiTXwqVBYYNZdSJssMM9sQeFDUkUPXv2LCNsPvnkE33EfleEZAIb6mJ1YcyynDp1qg5QYjfYwoWQXMIGNoPtFTBJAb1ZWGmb/Xx2obAhiUIC0dixY/Vx/Pjx+ti3b1+r50XcRmZWfvzxx3pJfJQzMQ08uGwAIUGwjlq9evXUzz//rHttYDsANuPyqsmlAIUNSRRDhgxJ7w4McYNRFAIUMzYkFyeeeKI+vvHGG+qdd95Jl6iwfQshmcDK9+Jv0Hz+/vvv66+PPfZYy2dGKqVy7UeQQLCAEvY9wvYKXGcguaNvjKCEwYMHq/fee8/qORG3Wbt2rWrcuHGZNUkeeughdf3111s9L+I2r776qjrzzDPLPDdr1izVsWNHa+eUZPKN38zYkMRx7bXXlvn/ddddZ+1ciB9gU93zzjsv/X84z+D/CcnEqaeeWma2JbI1FDX28WYdG0Ly5eyzz9azE1588UV1+eWX64wNIRXx4IMPqlWrVukemwceeECLHUIqWrkaWRssGFu/fn3197//3fYpEZaiWIoihBBCfIClKEIIIYSUHBQ2hBBCCEkMFDaEEEIISQwUNoQQQghJDBQ2hBBCCEkMFDaEEEIISQwUNoQQQghJDBQ2hBBCCEkMFDaEEEIISQwUNoQQQghJDBQ2hBBCCEkMFDaEEEIISQwUNoQQQghJDBQ2hBBCCEkMVVSJkUql0tufE0IIIcQPJG5LHM9GyQmbjRs36mPz5s1tnwohhBBCCojjderUyfr9SqmKpE/C2LVrl1q+fLnaZ599VKVKlSJVkhBLS5cuVfvuu69KIkl/j3x//pP095j091cK75Hvr3AgVyBqmjZtqipXzt5JU3IZG3wYBxxwQGy/HxcyicZaSu+R789/kv4ek/7+SuE98v0VRq5MjcDmYUIIIYQkBgobQgghhCQGCpuIqF69uho2bJg+JpWkv0e+P/9J+ntM+vsrhffI9xc/Jdc8TAghhJDkwowNIYQQQhIDhQ0hhBBCEgOFDSGEEEISA4UNIYQQQhIDhU0Ihg8frnr37q1q1aql6tatm/E1S5YsUSeccIJ+TaNGjdQtt9yidu7cmfP3/vjjj+rcc8/Vixnh915yySXq559/VjYZO3asXpk502Py5MlZf65///57vP7KK69UrtKqVas9zvfee+/N+TNbt25VV199tdpvv/1U7dq11a9//Wu1atUq5RqLFi3SttS6dWtVs2ZN1bZtWz1bYfv27Tl/zvVr+Nhjj+nrVqNGDdWzZ0/1xRdf5Hz9q6++qg466CD9+s6dO6t3331XuciIESPU4YcfrldFh+849dRT1bx583L+zMiRI/e4VnifrnLXXXftcb64Nkm4ftn8CR7wF75ev/Hjx6uTTjpJr/aL83vjjTfKfB/zj+68807VpEkT7WcGDhyovv3228jv4zBQ2IQAAeGMM85QV111Vcbv//LLL1rU4HWff/65ev7557Xh4qLnAqJm9uzZ6sMPP1T/+c9/tCFdfvnlyiYQcCtWrCjzuPTSS3WQPOyww3L+7GWXXVbm5+677z7lMvfcc0+Z8/3d736X8/U33HCDevvtt7XDHTdunN6i47/+67+Ua8ydO1dvIfLUU09p+3rooYfUk08+qW6//fYKf9bVa/jyyy+rG2+8UQu0qVOnqq5du6rjjjtOrV69OuPrcR+ec845WuBNmzZNiwU8Zs2apVwDtoQAOHHiRO0LduzYoQYNGqQ2bdqU8+cwIApeq8WLFyuX6dixY5nz/fTTT7O+1qfrBzDoC743XEeAuOHr9du0aZO+zyBEMgHf8Ne//lX7lkmTJqm9995b35MYAEZ1H4cG071JOJ577rlUnTp19nj+3XffTVWuXDm1cuXK9HNPPPFEat99901t27Yt4+/6+uuvMd0+NXny5PRz7733XqpSpUqpZcuWpVxh+/btqYYNG6buueeenK/r169f6rrrrkv5QsuWLVMPPfRQ3q9fv359qmrVqqlXX301/dycOXP0NZwwYULKde67775U69atvb2GRxxxROrqq69O//+XX35JNW3aNDVixIiMrz/zzDNTJ5xwQpnnevbsmbriiitSrrN69WptV+PGjQvti1xl2LBhqa5du+b9ep+vH8B91LZt29SuXbsScf2UUqnXX389/X+8r/333z91//33l/GR1atXT7344ouR3cdhYcYmQiZMmKBTpY0bN04/BxWKTcEwYs72Myg/BbMgSOVhTyuoX1d466231Nq1a9VFF11U4WtfeOEF1aBBA9WpUyc1dOhQtXnzZuUyKD2hrNS9e3d1//335ywdfvnll3okjWskIE3eokULfS1dZ8OGDap+/fpeXkNkQvH5Bz973Cf4f7bPHs8HXy/3pC/XClR0vVC2btmypd548JRTTsnqa1wBZQqUNdq0aaOz1SjfZ8Pn6wd7/ec//6kuvvjinBsu+3b9gixcuFCtXLmyzDXCXk4oLWW7RoXcx2EpuU0w4wQXOChqgPwf38v2M6inB6lSpYp2Ztl+xgbPPPOMdigVbSD6m9/8Rt+kcFwzZsxQt956q+4TeO2115SLXHvtterQQw/VnzfS3gjiSAc/+OCDGV+Pa1KtWrU9eqxwnV26XpmYP3++euSRR9QDDzzg5TVcs2aNLvdmusdQdgtzT7p+rVBCvP7661WfPn20uMxGhw4d1LPPPqu6dOmihRCuLcrICI5xbvZbKAh4KM/jvHGf3X333eroo4/WpSX0FiXl+gH0oqxfv15deOGFibl+5ZHrEOYaFXIfh6Xkhc1tt92m/vznP+d8zZw5cypscEvy+/3+++/VqFGj1CuvvFLh7w/2BiF7hYayAQMGqAULFujmVdfeI+q8ApwLRMsVV1yhGzldXfK8kGu4bNkyNXjwYF3rR/+M69ew1EGvDYJ9rv4T0KtXL/0QEBQPPvhg3Vf1hz/8QbnGkCFDytxvEDoQ0fAt6KNJEhgM4v1igJCU6+cLJS9sbrrpppyKGiBlmg/777//Hp3dMlsG38v2M+UbplAKwUypbD9j+v0+99xzulRz8sknh/57cFySLTAVFIu5pjhffP6YUYTRVHlwTZBKxUgsmLXBdY7jekXx/tDcfMwxx2in+fTTT3txDTOB0thee+21xwy0XJ89ng/zehe45ppr0pMIwo7aq1atqkuquFY+gHvowAMPzHq+Pl4/gAbgjz76KHSW07frt//u64BrggGQgP9369Ytsvs4NJF06pQYFTUPr1q1Kv3cU089pZuHt27dmrN5eMqUKennRo0a5UzzMJrD0Gx60003FfTzn376qX5/06dPT/nAP//5T30Nf/zxx5zNw//617/Sz82dO9fZ5uHvv/8+1b59+9TZZ5+d2rlzp/fXEE2H11xzTZmmw2bNmuVsHj7xxBPLPNerVy8nm09xr6GhEk2U33zzTUG/A9e4Q4cOqRtuuCHlAxs3bkzVq1cv9fDDD3t//co3SaOpdseOHYm6fipL8/ADDzyQfm7Dhg15NQ+HuY9Dn2ckv6VEWLx4cWratGmpu+++O1W7dm39NR64OcUoO3XqlBo0aFDqq6++Sr3//vt6JtHQoUPTv2PSpEnacBFwhMGDB6e6d++uv4cggkB0zjnnpFzgo48+0saMmT/lwXvAe8F5g/nz5+tZUxBpCxcuTL355pupNm3apPr27Ztykc8//1zPiMK1WrBggRY1uF7nn39+1vcIrrzyylSLFi1So0eP1u8VjhYP18C5t2vXLjVgwAD99YoVK9IPX6/hSy+9pJ3myJEj9aDg8ssvT9WtWzc9E/G8885L3XbbbenXf/bZZ6kqVapoxwsbRsCBMJ05c2bKNa666io9YBo7dmyZa7V58+b0a8q/P/giDIRgv19++aUWsDVq1EjNnj075SIYIOH9wbZwbQYOHJhq0KCBngHm+/ULBmn4h1tvvXWP7/l4/TZu3JiOdYgFDz74oP4a8RDce++9+h6Er5gxY0bqlFNO0YPhLVu2pH/Hsccem3rkkUfyvo+LhcImBBdccIG+sOUfY8aMSb9m0aJFqSFDhqRq1qypb1jcyEHVjtfiZ3BjC2vXrtVCBmIJ2Z2LLrooLZZsg/Pq3bt3xu/hPQTf/5IlS3QArF+/vjZaBNVbbrlFK3gXgSPB1FEEEziTgw8+OPWnP/2pTHat/HsEuGF/+9vf6pFmrVq1UqeddloZseBSZjGTvQYTtT5eQzhIBI5q1arpkd/EiRPLTFXHfRrklVdeSR144IH69R07dky98847KRfJdq1wHbO9v+uvvz79WTRu3Dh1/PHHp6ZOnZpylbPOOivVpEkTfb4YoeP/ENNJuH4ChAqu27x58/b4no/Xb8zumFX+Ie8DWZs77rhDnz98BgZS5d87ltWAKM33Pi6WSvgnmqIWIYQQQohduI4NIYQQQhIDhQ0hhBBCEgOFDSGEEEISA4UNIYQQQhIDhQ0hhBBCEgOFDSGEEEISA4UNIYQQQhIDhQ0hhBBCEgOFDSGEEEISA4UNIYQQQhIDhQ0hxGtefPFFVbNmTbVixYr0cxdddJHq0qWL2rBhg9VzI4SYh3tFEUK8Bi6sW7duqm/fvuqRRx5Rw4YNU88++6yaOHGiatasme3TI4QYporpP0gIIVFSqVIlNXz4cHX66aer/fffX4ubTz75hKKGkBKFGRtCSCI49NBD1ezZs9UHH3yg+vXrZ/t0CCGWYI8NIcR73n//fTV37lz1yy+/qMaNG9s+HUKIRZixIYR4zdSpU1X//v3VU089pUaOHKn23Xdf9eqrr9o+LUKIJdhjQwjxlkWLFqkTTjhB3X777eqcc85Rbdq0Ub169dJiB6UpQkjpwYwNIcRLfvzxR9W7d2+drXnyySfTz0PooCSF8hQhpPSgsCGEEEJIYmDzMCGEEEISA4UNIYQQQhIDhQ0hhBBCEgOFDSGEEEISA4UNIYQQQhIDhQ0hhBBCEgOFDSGEEEISA4UNIYQQQhIDhQ0hhBBCEgOFDSGEEEISA4UNIYQQQhIDhQ0hhBBCVFL4/wAKGDjehZJQQgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.plot(x, sample, c='k')\n", "ax.set(xlabel='$x$', ylabel='$y$', title='Sinusoid model sample');" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }