lamatrix.combine#

Classes and methods to combine models

Classes

CrosstermModel(*args[, posteriors])

Initialization function for all models.

JointModel(*args[, posteriors])

Initialization function for all models.

class lamatrix.combine.CrosstermModel(*args, posteriors=None)[source]#

Bases: Model, IOMixins, LatexMixins

Initialization function for all models. All models must be provided with input priors and posteriors that match their width.

property arg_names#

Returns a set of the user defined strings for all the arguments that the design matrix requires.

copy()#

Returns a deep copy of self.

design_matrix(*args, **kwargs)[source]#

Returns a design matrix, given inputs listed in self.arg_names.

property equation#

Provides the equation for the model in latex.

If accessed within a jupyter instance will return the equation in displayed latex, otherwise will return the equation in raw latex.

evaluate(**kwargs)#

Given an input set of arguments, will evaluate the model with the current best fit weights.

fit(*args, **kwargs)[source]#

Fit the design matrix of this model object.

Executing this function will update the posteriors argument to the best fit posteriors.

Parameters:
  • data (np.ndarray) – Input data to fit

  • errors (np.ndarray, optional) – Errors on the input data

  • mask (np.ndarray, optional) – Mask to apply when fitting. Values where mask is False will not be used during the fit.

property nvectors#

Returns the number of vectors required to build the object.

sample(**kwargs)#

Given an input set of arguments, will evaluate the model with a sample of the best fit weights drawn from the posteriors.

save(filename: str)#
to_latex()#
property width#

Returns the width of the design matrix once built.

class lamatrix.combine.JointModel(*args, posteriors=None)[source]#

Bases: Model, IOMixins, LatexMixins

Initialization function for all models. All models must be provided with input priors and posteriors that match their width.

property arg_names#

Returns a set of the user defined strings for all the arguments that the design matrix requires.

copy()#

Returns a deep copy of self.

design_matrix(*args, **kwargs)[source]#

Returns a design matrix, given inputs listed in self.arg_names.

property equation#

Provides the equation for the model in latex.

If accessed within a jupyter instance will return the equation in displayed latex, otherwise will return the equation in raw latex.

evaluate(**kwargs)#

Given an input set of arguments, will evaluate the model with the current best fit weights.

fit(*args, **kwargs)[source]#

Fit the design matrix of this model object.

Executing this function will update the posteriors argument to the best fit posteriors.

Parameters:
  • data (np.ndarray) – Input data to fit

  • errors (np.ndarray, optional) – Errors on the input data

  • mask (np.ndarray, optional) – Mask to apply when fitting. Values where mask is False will not be used during the fit.

property nvectors#

Returns the number of vectors required to build the object.

property priors#
sample(**kwargs)#

Given an input set of arguments, will evaluate the model with a sample of the best fit weights drawn from the posteriors.

save(filename: str)#
to_latex()#
property width#

Returns the width of the design matrix once built.